Active Asteroids: Mystery in the Main Belt

نویسندگان

  • Henry H. Hsieh
  • David Jewitt
چکیده

Classically, comets from the outer solar system (beyond the orbit of Neptune), are expected to be icy, and thus active near the Sun, while asteroids in the inner solar system (interior to the orbit of Jupiter) are expected to be relatively ice-deficient, and thus inert. Studies of anomalous objects, most recently 133P/Elst-Pizarro, challenge this classical picture, however, and suggest that either (1) subsurface ice can in fact be preserved over billions of years in small bodies in the inner solar system but still be close enough to the surface to be excavated by an impact by another body, or (2) non-gravitational dynamical evolution (primarily driven by asymmetrical outgassing) of icy bodies from the outer solar system can drive these cometary bodies onto thoroughly asteroid-like orbits, erasing all dynamical signs of their trans-Neptunian origins in the process. The question thus boils down to whether occasionally sublimating icy bodies on stable asteroid-like orbits in the inner solar system, particularly in the main asteroid belt, may in fact be native to the region or whether they must necessarily be recent arrivals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hawaii trails project: comet-hunting in the main asteroid belt

Context. The mysterious solar system object 133P/(7968) Elst-Pizarro is dynamically asteroidal, yet displays recurrent comet-like dust emission. Two scenarios were hypothesized to explain this unusual behavior: (1) 133P is a classical comet from the outer solar system that has evolved onto a main-belt orbit, or (2) 133P is a dynamically ordinary main-belt asteroid on which subsurface ice has re...

متن کامل

Production of Cosmic Dust by Hydrous and Anhydrous Asteroids: Implications for the Production of Interplanetary Dust Particles and Micrometeorites. G

Introduction: In our Solar System the asteroid belt is compositionally zoned, with the asteroids similar in reflection spectrum to the carbonaceopus meteorites dominating the outer-half of the main belt. In the outer-half of the main belt about one-half of the carbonaceous asteroids are hydrous, based on their infrared spectra [1]. The asteroids in the inner-half of the main belt are predominan...

متن کامل

Planetary Satellites, Asteroids, Comets and Meteors

Asteroids, mainly rocky or metallic bodies in the inner solar system, orbit the Sun in various distinct populations (planet-crossers, main-belt asteroids, trans-Neptunian Edgeworth-Kuiper belt objects, Centaurs in the outer planetary region) between which there are transfers over substantial timescales. For example the main belt is the main reservoir replenishing the Earth-crossing asteroids, t...

متن کامل

Dynamical erosion of the asteroid belt and implications for large impacts in the inner solar system

The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids with diameters D & 10 km in the current asteroid belt. In a numerical analysis of the long term evolution of test particles in the main asteroid belt region, we find that the dynamical loss h...

متن کامل

Thermal inertia of near-Earth asteroids and implications for the strength of the YORP effect

A number of recent works[1-9] have shown that the thermal inertia of the surfaces of small, km-sized near-Earth asteroids (NEAs) is in general between two and three orders of magnitude higher than that of large main belt asteroids[10] with sizes in the range between 200 and 1,000 km. This confirms the idea that large main-belt asteroids, over many hundreds of millions of years, have developed s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006